Thirty Meter Telescope (TMT) Narrow Field Infrared Adaptive Optics System (NFIRAOS) real-time controller preliminary architecture

نویسندگان

  • Dan Kerley
  • Malcolm Smith
  • Jennifer Dunn
  • Glen Herriot
  • Jean-Pierre Véran
  • Corinne Boyer
  • Brent Ellerbroek
  • Luc Gilles
  • Lianqi Wang
چکیده

The Narrow Field Infrared Adaptive Optics System (NFIRAOS) is the first light Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). A critical component of NFIRAOS is the Real-Time Controller (RTC) subsystem which provides real-time wavefront correction by processing wavefront information to compute Deformable Mirror (DM) and Tip/Tilt Stage (TTS) commands. The National Research Council of Canada Herzberg (NRC-H), in conjunction with TMT, has developed a preliminary design for the NFIRAOS RTC. The preliminary architecture for the RTC is comprised of several Linux-based servers. These servers are assigned various roles including: the High-Order Processing (HOP) servers, the Wavefront Corrector Controller (WCC) server, the Telemetry Engineering Display (TED) server, the Persistent Telemetry Storage (PTS) server, and additional testing and spare servers. There are up to six HOP servers that accept high-order wavefront pixels, and perform parallelized pixel processing and wavefront reconstruction to produce wavefront corrector error vectors. The WCC server performs low-order mode processing, and synchronizes and aggregates the high-order wavefront corrector error vectors from the HOP servers to generate wavefront corrector commands. The Telemetry Engineering Display (TED) server is the RTC interface to TMT and other subsystems. The TED server receives all external commands and dispatches them to the rest of the RTC servers and is responsible for aggregating several offloading and telemetry values that are reported to other subsystems within NFIRAOS and TMT. The TED server also provides the engineering GUIs and real-time displays. The Persistent Telemetry Storage (PTS) server contains fault tolerant data storage that receives and stores telemetry data, including data for Point-Spread Function Reconstruction (PSFR).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Infrared Imaging Spectrograph (iris) for Tmt: Simulation of the Atmospheric Dispersion Corrector Using Idl

IRIS (InfraRed Imaging Spectrograph) is a first light instrument presently being developed for the Thirty Meter Telescope (TMT). IRIS will include an integral field spectrograph and an imaging camera, covering wavelengths from 0.84 μm to 2.4 μm (infrared range). IRIS will work with the Narrow-Field Infrared Adaptive Optics System (NFIRAOS), achieving an unprecedented angular resolution [1], cre...

متن کامل

Physical optics modeling of Sky coverage for TMT NFIRAOS with advanced LQG controller

We have implemented the linear quadratic Gaussian (LQG) controller in our physical optics sky coverage simulator (MAOS) for the Thirty Meter Telescope (TMT) Narrow Field InFrared Adaptive Optics System (NFIRAOS) aimed for improved correction of tip/tilt and plate scale modes. The LQG controller has a built-in capability to correct narrow frequency vibrations that are above the closed loop bandw...

متن کامل

Computer simulations and real-time control of ELT AO systems using graphical processing units

The adaptive optics (AO) simulations at the Thirty Meter Telescope (TMT) have been carried out using the efficient, C based multi-threaded adaptive optics simulator (MAOS, http://github.com/lianqiw/maos). By porting time-critical parts of MAOS to graphical processing units (GPU) using NVIDIA CUDA technology, we achieved a 10 fold speed up for each GTX 580 GPU used compared to a modern quad core...

متن کامل

Sky coverage and tip/tilt error analysis for TMT

A Monte Carlo sky coverage model for laser guide star adaptive optics systems is presented. This model provides fast Monte Carlo simulations of the tip/tilt (TT) wavefront error calculated with minimum variance estimators over natural guide star constellations generated from star models. With this simulation code we are able to generate a TT error budget for the Thirty Metre Telescope (TMT) fac...

متن کامل

Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016